Autonomous task partitioning in robot foraging: an approach based on cost estimation

نویسندگان

  • Giovanni Pini
  • Arne Brutschy
  • Carlo Pinciroli
  • Marco Dorigo
  • Mauro Birattari
چکیده

We propose an approach for autonomous task partitioning in swarms of foraging robots. Task partitioning is the process of decomposing tasks into sub-tasks. Task partitioning impacts tasks execution and associated costs. Our approach is characterized by the use of a cost function, mapping the size of sub-tasks to the overall task cost. The robots model the cost function and use the model to select sub-tasks to perform, aiming to minimize costs. Our approach separates the task partitioning process from task-specific actions and it does not require a priori assumptions to be made about the best partitioning strategy to employ. We study a foraging scenario in which object transportation is performed by different robots, each moving objects for a limited distance. The robots autonomously decide the distance traveled on the basis of our approach. The robots use odometry for navigational purposes; we show that task partitioning reduces the impact of odometry errors and improves performance. We validate our approach using simulation-based experiments. We study how the swarm partitions transportation under a number of experimental conditions characterized by different levels of odometry accuracy, size of the environment and the swarm, and total transportation distance. Our approach leads to partitioning solutions that are appropriate for each condition.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Autonomous Task Partitioning in Swarms of Robots: an Approach Based on Cost Estimation

The information provided is the sole responsibility of the authors and does not necessarily reflect the opinion of the members of IRIDIA. The authors take full responsibility for any copyright breaches that may result from publication of this paper in the IRIDIA – Technical Report Series. IRIDIA is not responsible for any use that might be made of data appearing in this publication. In this wor...

متن کامل

A Q-learning Based Continuous Tuning of Fuzzy Wall Tracking

A simple easy to implement algorithm is proposed to address wall tracking task of an autonomous robot. The robot should navigate in unknown environments, find the nearest wall, and track it solely based on locally sensed data. The proposed method benefits from coupling fuzzy logic and Q-learning to meet requirements of autonomous navigations. Fuzzy if-then rules provide a reliable decision maki...

متن کامل

Design and Experimental Evaluation of integrated orientation estimation algorithm Autonomous Underwater Vehicle Based on Indirect Complementary Filter

This paper aims is to design an integrated navigation system constituted by low-cost inertial sensors to estimate the orientation of an Autonomous Underwater Vehicle (AUV) during all phases of under water and surface missions. The proposed approach relied on global positioning system, inertial measurement unit (accelerometer & rate gyro), magnetometer and complementary filter technique. Complem...

متن کامل

Self-organized Task Partitioning in a Swarm of Robots

In this work, we propose a method for self-organized adaptive task partitioning in a swarm of robots. Task partitioning refers to the decomposition of a task into less complex subtasks, which can then be tackled separately. Task partitioning can be observed in many species of social animals, where it provides several benefits for the group. Selforganized task partitioning in artificial swarm sy...

متن کامل

Discrete time robust control of robot manipulators in the task space using adaptive fuzzy estimator

This paper presents a discrete-time robust control for electrically driven robot manipulators in the task space. A novel discrete-time model-free control law is proposed by employing an adaptive fuzzy estimator for the compensation of the uncertainty including model uncertainty, external disturbances and discretization error. Parameters of the fuzzy estimator are adapted to minimize the estimat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Adaptive Behaviour

دوره 21  شماره 

صفحات  -

تاریخ انتشار 2013